

Third Edition

Charles H. Roth, Jr.
The University of Texas
at Austin

Lizy Kurian John
The University of Texas
at Austin

DIGITAL SYSTEMS DESIGN
USING VHDL®

Australia • Brazil • Mexico • Singapore • United Kingdom • United States

Digital Systems Design Using VHDL®,
Third Edition
Charles H. Roth, Jr. and Lizy Kurian John

Product Director, Global Engineering:
Timothy L. Anderson

Associate Media Content Developer:
Ashley Kaupert

Product Assistant: Alexander Sham

Marketing Manager: Kristin Stine

Director, Higher Education Production:
Sharon L. Smith

Content Project Manager: Jana Lewis

Production Service: RPK Editorial
Services, Inc.

Copyeditor: Harlan James

Proofreader: Lori Martinsek

Indexer: Shelly Gerger-Knechtl

Compositor: SPi Global

Senior Art Director: Michelle Kunkler

Internal Designer: Stratton Design

Cover Designer: Tin Box Studio

Cover Images: (upper image)
 stockchairatgfx/Shutterstock.com, (lower
image) Raimundas/Shutterstock.com

Intellectual Property
Analyst: Christine Myaskovsky
Project Manager: Sarah Shainwald

Text and Image Permissions Researcher:
Kristiina Paul

Manufacturing Planner: Doug Wilke

© 2018, 2008 Cengage Learning®

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced or distributed in any form or by any means,
except as permitted by U.S. copyright law, without the prior written
permission of the copyright owner.

ARM® is a registered trademark of ARM Limited. “ARM” is used to
represent ARM Holding plc; its operating company ARM Limited; and
its regional subsidiaries. ARM, the ARM logo, and AMBA are registered
trademarks of ARM Limited. All rights reserved.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706.

For permission to use material from this text or product,
submit all requests online at www.cengage.com/permissions.

Further permissions questions can be emailed to
permissionrequest@cengage.com.

Library of Congress Control Number: 2016952395

ISBN: 978-1-305-63514-2

Cengage Learning
20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning
solutions with employees residing in nearly 40 different countries
and sales in more than 125 countries around the world. Find your local
representative at www.cengage.com.

Cengage Learning products are represented in Canada by
Nelson Education Ltd.

To learn more about Cengage Learning Solutions, visit
www.cengage.com/engineering.

Purchase any of our products at your local college store or at our
preferred online store www.cengagebrain.com.

Unless otherwise noted, all items © Cengage Learning.

Printed in the United States of America
Print Number: 01 Print Year: 2016

iii

Preface vii
About the Authors xii

Chapter 1 Review of Logic Design Fundamentals 1
1.1 Combinational Logic 1
1.2 Boolean Algebra and Algebraic Simpli�cation 3
1.3 Karnaugh Maps 7
1.4 Designing With NAND and NOR Gates 10
1.5 Hazards in Combinational Circuits 12
1.6 Flip-Flops and Latches 16
1.7 Mealy Sequential Circuit Design 18
1.8 Moore Sequential Circuit Design 25
1.9 Equivalent States and Reduction of State Tables 28
1.10 Sequential Circuit Timing 30
1.11 Tristate Logic and Busses 31
 Problems 34

Chapter 2 Introduction to VHDL 39
2.1 Computer-Aided Design 39
2.2 Hardware Description Languages 42
2.3 VHDL Description of Combinational Circuits 44
2.4 VHDL Modules 47
2.5 Sequential Statements and VHDL Processes 54
2.6 Modeling Flip-Flops Using VHDL Processes 55
2.7 Processes Using Wait Statements 59
2.8 Two Types of VHDL Delays: Transport and Inertial Delays 62
2.9 Compilation, Simulation, and Synthesis of VHDL Code 63
2.10 VHDL Data Types and Operators 67
2.11 Simple Synthesis Examples 69
2.12 VHDL Models for Multiplexers 72
2.13 VHDL Libraries 75
2.14 Modeling Registers and Counters Using VHDL Processes 79
2.15 Behavioral and Structural VHDL 85
2.16 Variables, Signals, and Constants 94

CONTENTS

iv Contents

2.17 Arrays 97
2.18 Loops in VHDL 101
2.19 Assert and Report Statements 102
2.20 Tips for Debugging VHDL Code 106
 Problems 114

Chapter 3 Introduction to Programmable Logic Devices 128
3.1 Brief Overview of Programmable Logic Devices 128
3.2 Simple Programmable Logic Devices 131
3.3 Complex Programmable Logic Devices 146
3.4 Field Programmable Gate Arrays 150
3.5 Programmable SoCs (PSOC) 174
 Problems 176

Chapter 4 Design Examples 184
4.1 BCD to Seven-Segment Display Decoder 185
4.2 A BCD Adder 186
4.3 32-Bit Adders 188
4.4 Traf�c Light Controller 198
4.5 State Graphs for Control Circuits 201
4.6 Scoreboard and Controller 203
4.7 Synchronization and Debouncing 206
4.8 Add-and-Shift Multiplier 208
4.9 Array Multiplier 213
4.10 A Signed Integer/Fraction Multiplier 216
4.11 Keypad Scanner 228
4.12 Binary Dividers 235
 Problems 244

Chapter 5 SM Charts and Microprogramming 256
5.1 State Machine Charts 256
5.2 Derivation of SM Charts 261
5.3 Realization of SM Charts 271
5.4 Implementation of the Dice Game 274
5.5 Microprogramming 278
5.6 Linked State Machines 295
 Problems 297

Chapter 6 Designing with Field Programmable Gate
Arrays 308

6.1 Implementing Functions in FPGAs 308
6.2 Implementing Functions Using Shannon’s Decomposition 314

Contents v

6.3 Carry Chains in FPGAs 319
6.4 Cascade Chains in FPGAs 320
6.5 Examples of Logic Blocks in Commercial FPGAs 322
6.6 Dedicated Memory in FPGAs 324
6.7 Dedicated Multipliers in FPGAs 330
6.8 Cost of Programmability 331
6.9 FPGAs and One-Hot State Assignment 333
6.10 FPGA Capacity: Maximum Gates versus Usable Gates 335
6.11 Design Translation (Synthesis) 336
6.12 Mapping, Placement, and Routing 346
 Problems 351

Chapter 7 Floating-Point Arithmetic 361
7.1 Representation of Floating-Point Numbers 361
7.2 Floating-Point Multiplication 370
7.3 Floating-Point Addition 378
7.4 Other Floating-Point Operations 385
 Problems 386

Chapter 8 Additional Topics in VHDL 391
8.1 VHDL Functions 391
8.2 VHDL Procedures 394
8.3 VHDL Prede�ned Function Called NOW 397
8.4 Attributes 398
8.5 Creating Overloaded Operators 402
8.6 Multivalued Logic and Signal Resolution 403
8.7 The IEEE 9-Valued Logic System 408
8.8 SRAM Model Using IEEE 1164 412
8.9 Model for SRAM Read/Write System 414
8.10 Generics 417
8.11 Named Association 418
8.12 Generate Statements 419
8.13 Files and TEXTIO 421
 Problems 425

Chapter 9 Design of RISC Microprocessors 433
9.1 The RISC Philosophy 433
9.2 The MIPS ISA 436
9.3 MIPS Instruction Encoding 441
9.4 Implementation of a MIPS Subset 445
9.5 VHDL Model of the MIPS Subset 451
9.6 Design of an ARM Processor 465
9.7 ARM Instruction Encoding 475

vi Contents

9.8 Implementation of a Subset of ARM Instructions 483
9.9 VHDL Model of the ARM Subset 491
 Problems 509

Chapter 10 Verification of Digital Systems 515
10.1 Importance of Veri�cation 515
10.2 Veri�cation Terminology 519
10.3 Functional Veri�cation 521
10.4 Timing Veri�cation 526
10.5 Static Timing Analysis for Circuits with No Skew 528
10.6 Static Timing Analysis for Circuits with Clock Skew 535
10.7 Glitches in Sequential Circuits 539
10.8 Clock Gating 540
10.9 Clock Distribution Circuitry 544
 Problems 546

Chapter 11 Hardware Testing and Design for
Testability 554

11.1 Faults and Fault Models 555
11.2 Testing Combinational Logic 556
11.3 Testing Sequential Logic 560
11.4 Scan Testing 564
11.5 Boundary Scan 566
11.6 Memory Testing 577
11.7 Built-In Self-Test 579
 Problems 589

Chapter 12 Additional Design Examples (Online)

Appendix A 596
 VHDL Language Summary

Appendix B 604
 IEEE Standard Libraries

Appendix C 606
 TEXTIO Package

Appendix D 608
 Projects

References 618
Index 622

vii

This textbook is intended for a senior-level course in digital systems design. The book covers
both basic principles of digital system design and the use of a hardware description language,
VHDL, in the design process. After basic principles have been covered, students are encour-
aged to practice design by going through the design process. For this reason, many digital
system design examples, ranging in complexity from a simple binary adder to a microproces-
sor, are included in the text.

Students using this textbook should have completed a course in the fundamentals of logic
design, including both combinational and sequential circuits. Although no previous knowl-
edge of VHDL is assumed, students should have programming experience using a modern
higher-level language such as C. A course in assembly language programming and basic
computer organization is also very helpful, especially for Chapter 9.

This book is the result of many years of teaching a senior course in digital systems design
at the University of Texas at Austin. Throughout the years, the technology for hardware
implementation of digital systems has kept changing, but many of the same design principles
are still applicable. In the early years of the course, we handwired modules consisting of
discrete transistors to implement our designs. Then integrated circuits were introduced,
and we were able to implement our designs using breadboards and TTL logic. Now we are
able to use FPGAs and CPLDs to realize very complex designs. We originally used our own
hardware description language together with a simulator running on a mainframe computer.
When VHDL was adopted as an IEEE standard and became widely used in industry, we
switched to VHDL. The widespread availability of high-quality commercial CAD tools now
enables us to synthesize complex designs directly from the VHDL code.

All of the VHDL code in this textbook has been tested using the Modelsim simula-
tor. The Modelsim software is available in a student edition, and we recommend its use in
conjunction with this text. The companion website that accompanies this text provides a
link for downloading the Modelsim student edition and an introductory tutorial to help
 students get started using the software. Students can access these materials by visiting
https://login.cengage.com.

Structure
Because students typically take their �rst course in logic design two years before this course,
most students need a review of the basics. For this reason, Chapter 1 includes a review of
logic design fundamentals. Most students can review this material on their own, so it is unnec-
essary to devote much lecture time to this chapter.

PREFACE

viii Preface

Chapter 2 starts with an overview of modern design �ow. It also summarizes various
technologies for implementation of digital designs. Then, it introduces the basics of VHDL,
and this hardware description language is used throughout the rest of the book. Additional
features of VHDL are introduced on an as-needed basis, and more advanced features are
covered in Chapter 8. From the start, we relate the constructs of VHDL to the corresponding
hardware. Some textbooks teach VHDL as a programming language and devote many pages
to teaching the language syntax. Instead, our emphasis is on how to use VHDL in the digital
design process. The language is very complex, so we do not attempt to cover all its features.
We emphasize the basic features that are necessary for digital design and omit some of the
less-used features. Use of standard IEEE VHDL libraries is introduced in this chapter and
only IEEE standard libraries are used throughout the test. Chapter 2 also provides coding tips
and strategies on how to write VHDL code that can lead to the intended hardware quickly.

VHDL is very useful in teaching top-down design. We can design a system at a high level
and express the algorithms in VHDL. We can then simulate and debug the designs at this
level before proceeding with the detailed logic design. However, no design is complete until
it has actually been implemented in hardware and the hardware has been tested. For this
reason, we recommend that the course include some lab exercises in which designs are imple-
mented in hardware. We introduce simple programmable logic devices (PLDs) in Chapter 3
so that real hardware can be used early in the course if desired. Chapter 3 starts with an
overview of programmable logic devices and presents simple programmable logic devices
�rst, followed by an introduction to complex programmable logic devices (CPLDs) and
Field Programmable Gate Arrays (FPGAs). There are many products in the market, and it
is useful for students to learn about commercial products. However, it is more important for
them to understand the basic principles in the construction of these programmable devices.
Hence we present the material in a generalized fashion, with references to speci�c products
as examples. The material in this chapter also serves as an introduction to the more detailed
treatment of FPGAs in Chapter 6.

Chapter 4 presents a variety of design examples, including both arithmetic and non-
arithmetic examples. Simple examples such as a BCD to 7-segment display decoder to more
complex examples such as game scoreboards, keypad scanners, and binary dividers are pre-
sented. The chapter presents common techniques used for computer arithmetic, including
carry look-ahead addition and binary multiplication and division. Use of a state machine for
sequencing the operations in a digital system is an important concept presented in this chap-
ter. Synthesizable VHDL code is presented for the various designs. A variety of examples are
presented so that instructors can select their favorite designs for teaching.

Use of sequential machine charts (SM charts) as an alternative to state graphs is covered
in Chapter 5. We show how to write VHDL code based on SM charts and how to realize hard-
ware to implement the SM charts. Then, the technique of microprogramming is presented.
Transformation of SM charts for different types of microprogramming is discussed. Then, we
show how the use of linked state machines facilitates the decomposition of complex systems
into simpler ones. The design of a dice-game simulator is used to illustrate these techniques.

Chapter 6 presents issues related to implementing digital systems in Field Programmable
Gate Arrays. A few simple designs are �rst hand-mapped into FPGA building blocks to illus-
trate the mapping process. Shannon’s expansion for decomposition of functions with several
variables into smaller functions is presented. Features of modern FPGAs like carry chains,
cascade chains, dedicated memory, dedicated multipliers, etc., are then presented. Instead
of describing all features in a selected commercial product, the features are described in a
general fashion. Once students understand the fundamental general principles, they will be
able to understand and use any commercial product they have to work with. This chapter
also introduces the processes and algorithms in the software design �ow. Synthesis, mapping,

Preface ix

placement, and routing processes are brie�y described. Optimizations during synthesis are
illustrated.

Basic techniques for �oating-point arithmetic are described in Chapter 7. We present a
simple �oating-point format with 2’s complement numbers and then the IEEE standard �oat-
ing-point formats. A �oating-point multiplier example is presented starting with development
of the basic algorithm, then simulating the system using VHDL, and �nally synthesizing and
implementing the system using an FPGA. Some instructors may prefer to cover Chapters 8
and 9 before teaching Chapter 7. Chapter 7 can be omitted without loss of any continuity.

By the time students reach Chapter 8, they should be thoroughly familiar with the basics
of VHDL. At this point we introduce some of the more advanced features of VHDL and
illustrate their use. The use of multi-valued logic, including the IEEE-1164 standard logic, is
one of the important topics covered. A memory model with tri-state output busses illustrates
the use of the multi-valued logic.

Chapter 9 presents the design of a microprocessor, starting from the description of the
instruction set architecture (ISA). The processor is an early RISC processor, the MIPS
R2000. The important instructions in the MIPS ISA are described and a subset is then imple-
mented. The design of the various components of the processor, such as the instruction mem-
ory module, data memory module, and register �le are illustrated module by module. These
components are then integrated together, and a complete processor design is presented.
The model can be tested with a test bench, or it can be synthesized and implemented on an
FPGA. In order to test the design on an FPGA, one will need to write input-output mod-
ules for the design. This example requires understanding of the basics of assembly language
programming and computer organization. After presenting the MIPS design, the chapter
progresses to a design with the ARM ISA. A simpli�ed introduction to the ARM ISA is �rst
presented, followed by an implementation of a subset of the ISA. This is a signi�cant addition
to the previous MIPS design. The coverage is augmented with relevant example questions,
solutions, and exercise problems on the ARM ISA.

Chapter 10 is a new chapter, presenting new material on veri�cation, a concept central to
the design of complex systems. A good understanding of timing in sequential circuits and the
principles of synchronous design is essential to the digital system design process. Functional
veri�cation is introduced, explaining jargon in veri�cation, validation, emulation, and distinc-
tion with testing. Self-testing test benches are explained. Concept of coverage is introduced.
Timing veri�cation is presented with static timing analysis of circuits. Clock skew, clock
 gating, power gating, and asynchronous design are introduced.

The important topics of hardware testing and design for testability are covered in
 Chapter 11. This chapter introduces the basic techniques for testing combinational and
sequential logic. Then scan design and boundary-scan techniques, which facilitate the testing
of digital systems, are described. The chapter concludes with a discussion of built-in self-test
(BIST). VHDL code for a boundary-scan example and for a BIST example is included. The
topics in this chapter play an important role in digital system design, and we recommend that
they be included in any course on this subject. Chapter 11 can be covered any time after the
completion of Chapter 8.

Chapter 12, available only online via https://login.cengage.com, presents three complete
design examples that illustrate the use of VHDL synthesis tools. First, a wristwatch design
shows the progress of a design from a textual description to a state diagram and then a
VHDL model. This example illustrates modular design. The test bench for the wristwatch
illustrates the use of multiple procedure calls to facilitate the testing. The second example
describes the use of VHDL to model RAM memories. The third example, a serial communi-
cations receiver-transmitter, should easily be understood by any student who has completed
the material through Chapter 8.

x Preface

New to the Third Edition
For instructors who used the second edition of this text, here is a mapping to help understand
the changes in the third edition. The IEEE numeric-bit library is used �rst until multi-valued
logic is introduced in Chapter 8. The multi-valued IEEE numeric-std library is used thereafter.
All code has been converted to use IEEE standard libraries instead of the BITLIB library.

Chapter 1 Logic hazard description is improved. More detailed examples on static haz-
ards are added. Students are introduced to memristors. The sequential circuit
timing section is kept to an introductory level because more elaborate static
timing analysis is presented in a new chapter on veri�cation, Chapter 10.

Chapter 2 Coding examples to improve test bench creation are introduced in Chapter 2.
Coding tips and strategies for synthesizable code are presented. Multiple
debugging examples are presented towards the end of the chapter.

Chapter 3 Information on commercial chips updated to re�ect state of the art. Added
introduction to programmable System on a Chip (SoC).

Chapter 4 General introduction to parallel pre�x adders with details of Kogge Stone
adder. New exercise problems including those on Kogge Stone and Brent-
Kung adders.

Chapter 5 Added historical perspective on microprogramming. New example problems
and new exercise problems.

Chapter 6 Information on commercial chips updated to re�ect state of the art. Xilinx
Kintex chips described. New problems added to make use of the new types
of FPGA architectures.

Chapter 7 Several new example problems on IEEE �oating point standards illustrated
in detail. Rounding modes in IEEE standard and Microsoft Excel illustrated
with examples. Several new exercise problems.

Chapter 8 Functions and procedures from the prior edition’s Chapter 2 moved to here.
Many sections from old Chapter 8 are still here. A memory model previously
in old Chapter 9 presented as example of multi-valued logic design in new
Chapter 8.

New examples on functions and procedures added. VHDL function NOW is
introduced. New exercise questions on Kogge-Stone and Brent-Kung adder
to utilize advanced VHDL features such as generate are added.

Chapter 9 This chapter covers ARM processor design. A simpli�ed introduction to the
ARM ISA is �rst presented followed by an implementation of a subset of
the ISA. This is a signi�cant addition to the MIPS design that was previously
presented. Several example questions and solutions on the ARM ISA are
presented. Several exercise problems are added.

Chapter 10 This is a new chapter on veri�cation. It covers functional veri�cation as
introduced, explaining terminology in veri�cation, validation, emulation,
and distinction with testing. Self-checking test benches are explained. Con-
cept of coverage is introduced. Timing veri�cation is presented with static
timing analysis of circuits. Clock skew, clock gating, power gating, and asyn-
chronous design are brie�y presented. Exercise problems cover functional
and timing veri�cation.

Preface xi

Chapter 11 The prior edition’s Chapter 10 on testing is modi�ed and retained as
 Chapter 11. Memory testing is introduced. Several new problems added.
Tests such as the popular March 14 tests are introduced in the chapter and
new exercise problems are included.

Chapter 12 This chapter will be available only electronically. The wristwatch design,
the memory timing models, and the UART design will be available to
 interested instructors and students. This chapter may be accessed at
https://login.cengage.com.

Instructor Resources
A detailed Instructor’s Solutions Manual containing solutions to all the exercises from the
text, VHDL code used in the book, and Lecture Note PowerPoint slides are available via a
secure, password-protected Instructor Resource Center at https://login.cengage.com.

Acknowledgments
We would like to thank the many individuals who have contributed their time and effort
to the development of this textbook. Over many years we have received valuable feedback
from the students in our digital systems design courses. We would especially like to thank
the faculty members who reviewed the previous edition and offered many suggestions for its
improvement. These faculty include:

Lee Belfore, Old Dominion University
Gang Feng, University of Wisconsin, Platteville
K. Gopalan, Purdue University, Calumet
Miriam Leeser, Northeastern University
Melissa C. Smith, Clemson University
Aaron Striegel, University of Notre Dame
Don Thomas, Carnegie Mellon University

We also wish to acknowledge Dr. Nur Touba’s comments on various parts of the book.
Dr. Earl Swartzlander provided comments on the parallel pre�x adder section.

We thank ARM Limited for providing the permission to include an example design
based on the ARM ISA in Chapter 9. Special thanks go to Ian Burgess at Mentor Graphics
for his work on the ModelSim code. We also take this opportunity to express our gratitude
to the student assistants who helped with the word processing, VHDL code testing, and
illustrations: Arif Mondal, Kevin Johns, Jae-Min Jo, Di Xie, Poulami Das, and Kangjoo Lee,
who helped on this version, and Roger Chen, William Earle, Manish Kapadia, Matt Morgan,
Elizabeth Norris, and Raman Suri, who helped on the previous edition.

We wish to acknowledge and thank our Global Engineering team at Cengage Learning for
their dedication to this new book: Timothy Anderson, Product Director; Ashley Kaupert, Asso-
ciate Media Content Developer; Jana Lewis, Content Project Manager; Kristin Stine, Market-
ing Manager; Elizabeth Brown and Brittany Burden, Learning Solutions Specialists; Alexander
Sham, Product Assistant; and Rose Kernan of RPK Editorial Services, Inc. They have skillfully
guided every aspect of this text’s development and production to successful completion.

Charles. H. Roth, Jr.
Lizy K. John

xii

ABOUT THE AUTHORS

Charles H. Roth, Jr. is Professor Emeritus of Electrical and Computer Engineering
at the University of Texas at Austin. He has been on the UT faculty since 1961.
He received his BSEE degree from the University of Minnesota, his MSEE and
EE degrees from the Massachusetts Institute of Technology, and his PhD degree
in EE from Stanford University. His teaching and research interests included
logic design, digital systems design, switching theory, microprocessor systems, and
 computer- aided design. He developed a self-paced course in logic design, which
formed the basis of his textbook, Fundamentals of Logic Design. He is also the
author of Digital Systems Design Using VHDL, two other textbooks, and several
software packages. He is the author or co-author of more than 50 technical papers
and reports. Six PhD students and 80 MS students have received their degrees
under his supervision. He received several teaching awards including the 1974 Gen-
eral Dynamics Award for Outstanding Engineering Teaching.

Lizy Kurian John is the B.N. Gafford Professor in the Electrical and Computer
Engineering at University of Texas at Austin. She received her PhD in Computer
Engineering from the Pennsylvania State University. Her research interests include
computer architecture, performance evaluation, workload characterization, digital
systems design, FPGAs, rapid prototyping, and recon�gurable architectures. She is
the recipient of many awards including the NSF CAREER award, UT Austin Engi-
neering Foundation Faculty Award, Halliburton, Brown, and Root Engineering
Foundation Young Faculty Award 2001, University of Texas Alumni Association
(Texas Exes) Teaching Award 2004, the Pennsylvania State University Outstand-
ing Engineering Alumnus 2011, etc. She has co-authored a book on Digital Systems
Design using VHDL (Cengage Publishers, 2007), a book on Digital Systems Design
using Verilog (Cengage Publishers, 2014) and has edited four books including a
book on Computer Performance Evaluation and Benchmarking. In the past, she has
served as Associate Editor of IEEE Transactions on Computers, IEEE Transac-
tions on VLSI and IEEE Micro. She holds 10 U.S. patents and is an IEEE Fellow
(Class of 2009).

1

REVIEW OF LOGIC DESIGN
FUNDAMENTALS

C H A P T E R

1

This chapter reviews many of the logic design topics normally taught in a �rst course in logic
design. First, combinational logic and then sequential logic are reviewed. Combinational
logic has no memory, so the present output depends only on the present input. Sequential
logic has memory, so the present output depends not only on the present input but also on
the past sequence of inputs. Various types of �ip-�ops and their state tables are presented.
Example designs for Mealy and Moore sequential circuits are illustrated, followed by tech-
niques to reduce the number of states in sequential designs. Circuit timing and synchronous
design are particularly important, since a good understanding of timing issues is essential to
the successful design of digital systems. A detailed treatment of sequential circuit timing is
presented in Chapter 10 in a section on timing veri�cation. For more details on any of the
topics discussed in this chapter, the reader should refer to a standard logic design textbook
such as Roth and Kinney, Fundamentals of Logic Design, 7th Edition (Cengage Learning,
2014). Some of the review examples that follow are referenced in later chapters of this text.

 1.1 Combinational Logic
Some of the basic gates used in logic circuits are shown in Figure 1-1. Unless otherwise speci-
�ed, all the variables used to represent logic signals are two-valued, and the two values are
designated 0 and 1. Normally positive logic is used, for which a low voltage corresponds to a
logic 0 and a high voltage corresponds to a logic 1. When negative logic is used, a low voltage
corresponds to a logic 1 and a high voltage corresponds to a logic 0.

For the AND gate of Figure 1-1, the output C 5 1 if and only if the input A 5 1 and
the input B 5 1. Use a raised dot or simply write the variables side by side to indicate the
AND operation; thus C 5 A AND B 5 A # B 5 AB. For the OR gate, the output C 5 1 if
and only if the input A 5 1 or the input B 5 1 (inclusive OR). Use 1 to indicate the OR
operation; thus C 5 A OR B 5 A 1 B. The NOT gate, or inverter, forms the complement
of the input; that is, if A 5 1, C 5 0, and if A 5 0, C 5 1. Use a prime 1 r 2 to indicate the

FIGURE 1-1: Basic Gates A
B

C A
B

C

A
B

CA C

AND: C = A B OR: C = A + B

NOT: C = A9 Exclusive OR: C = A % B

2 Chapter 1 Review of Logic Design Fundamentals

FIGURE 1-2: Full Adder

X

Y

Cin

Cout

Sum

(a) Full adder module (b) Truth table

Full
Adder

X Y Cin Cout Sum
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

complement (NOT) operation, so C 5 NOT A 5 A r. The exclusive-OR (XOR) gate has an
output C 5 1 if A 5 1 and B 5 0 or if A 5 0 and B 5 1. The symbol ! represents exclusive
OR, so write

 C 5 A XOR B 5 AB r 1 A rB 5 A ! B (1-1)

The behavior of a combinational logic circuit can be speci�ed by a truth table that gives the
circuit outputs for each combination of input values. As an example, consider the full adder of
Figure 1-2, which adds two binary digits (X and Y) and a carry 1Cin 2 to give a sum (Sum) and a
carry out 1Cout 2 . The truth table speci�es the adder outputs as a function of the adder inputs.
For example, when the inputs are X 5 0, Y 5 0, and Cin 5 1, adding the three inputs gives
0 1 0 1 1 5 01, so the sum is 1 and the carry out is 0. When the inputs are 011, 0 1 1 1 1 5 10,
so Sum 5 0 and Cout 5 1. When the inputs are X 5 Y 5 Cin 5 1, 1 1 1 1 1 5 11, so
Sum 5 1 and Cout 5 1.

Derive algebraic expressions for Sum and Cout from the truth table. From the table,
Sum 5 1 when X 5 0, Y 5 0, and Cin 5 1. The term X rY rCin equals 1 only for this com-
bination of inputs. The term X rYCinr 5 1 only when X 5 0, Y 5 1, and Cin 5 0. The term
XY rCinr is 1 only for the input combination X 5 1, Y 5 0, and Cin 5 0. The term XYCin is 1
only when X 5 Y 5 Cin 5 1. Therefore, Sum is formed by ORing these four terms together:

 Sum 5 X rY rCin 1 X rYCinr 1 XY rCinr 1 XYCin (1-2)

Each of the terms in this sum of products (SOP) expression is 1 for exactly one combina-
tion of input values. In a similar manner, Cout is formed by ORing four terms together:

 Cout 5 X rYCin 1 XY rCin 1 XYCinr 1 XYCin (1-3)

Each term in Equations (1-2) and (1-3) is referred to as a minterm, and these equations
are referred to as minterm expansions. These minterm expansions can also be written in
m-notation or decimal notation as follows:

 Sum 5 m1 1 m2 1 m4 1 m7 5 Sm 11, 2, 4, 7 2

 Cout 5 m3 1 m5 1 m6 1 m7 5 Sm 13, 5, 6, 7 2

The decimal numbers designate the rows of the truth table for which the corresponding func-
tion is 1. Thus Sum 5 1 in rows 001, 010, 100, and 111 (rows 1, 2, 4, 7).

1.2 Boolean Algebra and Algebraic Simplification 3

A logic function can also be represented in terms of the inputs for which the function
value is 0. Referring to the truth table for the full adder, Cout 5 0 when X 5 Y 5 Cin 5 0.
The term 1X 1 Y 1 Cin 2 is 0 only for this combination of inputs. The term 1X 1 Y 1 Cinr 2 is
0 only when X 5 Y 5 0 and Cin 5 1. The term 1X 1 Y r 1 Cin 2 is 0 only when X 5 Cin 5 0
and Y 5 1. The term 1X r 1 Y 1 Cin 2 is 0 only when X 5 1 and Y 5 Cin 5 0. Cout is formed
by ANDing these four terms together:

 Cout 5 1X 1 Y 1 Cin 2 1X 1 Y 1 Cinr 2 1X 1 Y r 1 Cin 2 1X r 1 Y 1 Cin 2 (1-4)

Cout is 0 only for the 000, 001, 010, and 100 rows of the truth table and, therefore, must
be 1 for the remaining four rows. Each of the terms in the Product of Sums (POS) expression
in Equation (1-4) is referred to as a maxterm, and (1-4) is called a maxterm expansion. This
maxterm expansion can also be written in decimal notation as

 Cout 5 M0
M1

M2
M4 5 PM 10, 1, 2, 4 2

where the decimal numbers correspond to the truth table rows for which Cout 5 0.

 1.2 Boolean Algebra and Algebraic Simplification
The basic mathematics used for logic design is Boolean algebra. Table 1-1 summarizes the
laws and theorems of Boolean algebra. They are listed in dual pairs; for example, Equation
(1-10D) is the dual of (1-10). They can be veri�ed easily for two-valued logic by using truth
tables. These laws and theorems can be used to simplify logic functions, so they can be real-
ized with a reduced number of components.

A very important law in Boolean algebra is the DeMorgan’s law. DeMorgan’s laws,
stated in Equations (1-16, 1-16D), can be used to form the complement of an expression on a
step-by-step basis. The generalized form of DeMorgan’s law in Equation (1-17) can be used
to form the complement of a complex expression in one step. Equation (1-17) can be inter-
preted as follows: To form the complement of a Boolean expression, replace each variable
by its complement; also replace 1 with 0, 0 with 1, OR with AND, and AND with OR. Add
parentheses as required to assure the proper hierarchy of operations. If AND is performed
before OR in F, then parentheses may be required to assure that OR is performed before
AND in F r.

Find the complement of F if

F 5 X 1 E rK 1C 1AB 1 D r 2 # 1 1 WZ r 1G rH 1 0 2 2
F r 5 X r 1E 1 K r 1 1C r 1 1A r 1 B r 2D 1 0 2 1W r 1 Z 1 1G 1 H r 2 # 1 2 2

Additional parentheses in F r were added when an AND operation in F was replaced with an OR. The dual of an expres-
sion is the same as its complement, except that the variables are not complemented.

E X A M PLE

4 Chapter 1 Review of Logic Design Fundamentals

TABLE 1-1: Laws and Theorems of Boolean Algebra

Operations with 0 and 1:

X 1 0 5 X (1-5) X # 1 5 X (1-5D)

X 1 1 5 1 (1-6) X # 0 5 0 (1-6D)

Idempotent laws:

X 1 X 5 X (1-7) X # X 5 X (1-7D)

Involution law:

1X r 2 r 5 X (1-8)

Laws of complementarity:

X 1 X r 5 1 (1-9) X # X r 5 0 (1-9D)

Commutative laws:

X 1 Y 5 Y 1 X (1-10) XY 5 YX (1-10D)

Associative laws:

 1X 1 Y 2 1 Z 5 X 1 1Y 1 Z 2
 5 X 1 Y 1 Z

(1-11) 1XY 2Z 5 X 1YZ 2 5 XYZ (1-11D)

Distributive laws:

X 1Y 1 Z 2 5 XY 1 XZ (1-12) X 1 YZ 5 1X 1 Y 2 1X 1 Z 2 (1-12D)

Simpli�cation theorems:

 XY 1 XY r 5 X (1-13) 1X 1 Y 2 1X 1 Y r 2 5 X (1-13D)

 X 1 XY 5 X (1-14) X 1X 1 Y 2 5 X (1-14D)

 1X 1 Y r 2Y 5 XY (1-15) XY r 1 Y 5 X 1 Y (1-15D)

DeMorgan’s laws:

1X 1 Y 1 Z 1 c2 r 5 X rY rZ rc (1-16) 1XYZ c 2 r 5 X r 1 Y r 1 Z r 1 c (1-16D)

3f 1X1, X2, c, Xn, 0, 1, 1, # 2 4 r 5 f 1X1r, X2r, c, Xnr , 1, 0, # , 1 2 (1-17)

Duality:

1X1 Y 1 Z1 c2D 5 XYZ c (1-18) 1XYZ c2D 5 X1 Y 1 Z1 c (1-18D)

3 f 1X1, X2, c, Xn, 0, 1, 1, # 2 4D 5 f 1X1, X2, c, Xn, 1, 0, # , 1 2 (1-19)

Theorem for multiplying out and factoring:

1X 1 Y 2 1X r 1 Z 2 5 XZ 1 X rY (1-20) XY 1 X rZ 5 1X 1 Z 2 1X r 1 Y 2 (1-20D)

Consensus theorem:

XY 1 YZ 1 X rZ 5 XY 1 X rZ (1-21) 1X 1 Y 2 1Y 1 Z 2 1X r 1 Z 2
5 1X 1 Y 2 1X r 1 Z 2

(1-21D)

1.2 Boolean Algebra and Algebraic Simplification 5

Four ways of simplifying a logic expression using the theorems in Table 1-1 are as follows:

1. Combining terms. Use the theorem XY 1 XY r 5 X to combine two terms. For example,

 ABC rD r 1 ABCD r 5 ABD r 3X 5 ABD r, Y 5 C 4

When combining terms by this theorem, the two terms to be combined should contain
exactly the same variables, and exactly one of the variables should appear complemented
in one term and not in the other. Since X 1 X 5 X, a given term may be duplicated and
combined with two or more other terms. For example, the expression for Cout in Equa-
tion (1-3) can be simpli�ed by combining the �rst and fourth terms, the second and fourth
terms, and the third and fourth terms:

 Cout 5 1X rYCin 1 XYCin 2 1 1XY rCin 1 XYCin 2 1 1XYCinr 1 XYCin 2
 5 YCin 1 XCin 1 XY (1-22)

Note that the fourth term in Equation (1-3) was used three times.
The theorem can still be used, of course, when X and Y are replaced with more compli-
cated expressions. For example,

1A 1 BC 2 1D 1 E r 2 1 A r 1B r 1 C r 2 1D 1 E r 2 5 D 1 E r

3X 5 D 1 E r, Y 5 A 1 BC, Y r 5 A r 1B r 1 C r 2 4

2. Eliminating terms. Use the theorem X 1 XY 5 X to eliminate redundant terms if pos-
sible; then try to apply the consensus theorem 1XY 1 X rZ 1 YZ 5 XY 1 X rZ 2 to elimi-
nate any consensus terms. For example,

A rB 1 A rBC 5 A rB 3X 5 A rB 4

A rBC r 1 BCD 1 A rBD 5 A rBC r 1 BCD 3X 5 C, Y 5 BD, Z 5 A rB 4

3. Eliminating literals. Use the theorem X 1 X rY 5 X 1 Y to eliminate redundant liter-
als. Simple factoring may be necessary before the theorem is applied. For example,

 A rB 1 A rB rC rD r 1 ABCD r 5 A r 1B 1 B rC rD r 2 1 ABCD r (by (1-12))

 5 A r 1B 1 C rD r 2 1 ABCD r (by (1-15D))

 5 B 1A r 1 ACD r 2 1 A rC rD r (by (1-10))

 5 B 1A r 1 CD r 2 1 A rC rD r (by (1-15D))

 5 A rB 1 BCD r 1 A rC rD r (by (1-12))

The expression obtained after applying 1, 2, and 3 will not necessarily have a minimum
number of terms or a minimum number of literals. If it does not and no further simpli�-
cation can be made using 1, 2, and 3, deliberate introduction of redundant terms may be
necessary before further simpli�cation can be made.

4. Adding redundant terms. Redundant terms can be introduced in several ways, such as
adding XX r, multiplying by 1X 1 X r 2 , adding YZ to XY 1 X rZ (consensus theorem),

6 Chapter 1 Review of Logic Design Fundamentals

or adding XY to X. When possible, the terms added should be chosen so that they will
combine with or eliminate other terms. For example,

 WX 1 XY 1 X rZ r 1 WY rZ r 1Add WZ r by the consensus theorem. 2
 5 WX 1 XY 1 X rZ r 1 WY rZ r 1 WZ r 1Eliminate WY rZ r. 2
 5 WX 1 XY 1 X rZ r 1 WZ r 1Eliminate WZ r. 2
 5 WX 1 XY 1 X rZ r

When multiplying out or factoring an expression, in addition to using the ordinary
distributive law (1-12), the second distributive law (1-12D) and theorem (1-20) are par-
ticularly useful. The following is an example of multiplying out to convert from a product
of sums to a sum of products:

 1A 1 B 1 D 2 1A 1 B r 1 C r 2 1A r 1 B 1 D r 2 1A r 1 B 1 C r 2
 5 1A 1 1B 1 D 2 1B r 1 C r 2 2 1A r 1 B 1 C rD r 2 (by (1-12D))

 5 1A 1 BC r 1 B rD 2 1A r 1 B 1 C rD r 2 (by (1-20))

 5 A 1B 1 C rD r 2 1 A r 1BC r 1 B rD 2 (by (1-20))

 5 AB 1 AC rD r 1 A rBC r 1 A rB rD (by (1-12))

Note that the second distributive law (1-12D) and theorem (1-20) were applied before
the ordinary distributive law. Any Boolean expression can be factored by using the two
distributive laws (1-12 and 1-12D) and theorem (1-20). As an example of factoring, read
the steps in the preceding example in the reverse order.

The following theorems apply to exclusive-OR:

 X ! 0 5 X (1-23)

 X ! 1 5 X r (1-24)

 X ! X 5 0 (1-25)

 X ! X r 5 1 (1-26)

 X ! Y 5 Y ! X 1commutative law 2 (1-27)

 1X ! Y 2 ! Z 5 X ! 1Y ! Z 2 5 X ! Y ! Z 1associative law 2 (1-28)

 X 1Y ! Z 2 5 XY ! XZ 1distributive law 2 (1-29)

1X ! Y 2 r 5 X ! Y r 5 X r ! Y 5 XY 1 X rY r (1-30)

The expression for Sum in Equation (1-2) can be rewritten in terms of exclusive-OR by
using Equations (1-1) and (1-30):

Sum 5 X r 1Y rCin 1 YCinr 2 1 X 1Y rCinr 1 YCin 2
5 X r 1Y ! Cin 2 1 X 1Y ! Cin 2 r 5 X ! Y ! Cin

 (1-31)

1.3 Karnaugh Maps 7

The simpli�cation rules that you studied in this section are important when a circuit has
to be optimized to use a smaller number of gates. The existence of equivalent forms also
helps when mapping circuits into particular target devices where only certain types of logic
(e.g., NAND only or NOR only) are available.

 1.3 Karnaugh Maps
Karnaugh maps (K-maps) provide a convenient way to simplify logic functions of three to
�ve variables. Figure 1-3 shows a four-variable Karnaugh map. Each square in the map rep-
resents one of the 16 possible minterms of four variables. A 1 in a square indicates that the
minterm is present in the function, and a 0 (or blank) indicates that the minterm is absent. An
X in a square indicates that you don’t care whether the minterm is present or not. Don’t cares
arise under two conditions: (1) The input combination corresponding to the don’t care can
never occur, and (2) the input combination can occur, but the circuit output is not speci�ed
for this input condition.

FIGURE 1-3:
Four-Variable
Karnaugh Maps

1

1

1

1

1

1

0100 11 10

01

00

11

10

AB
CD

1

X1

X

1

Four corner terms
combine to give B9 D9

C A9BD

F = Sm (0, 2, 3, 5, 6, 7, 8, 10, 11) + Sd (14, 15)
 = C + B9 D9 + A9 BD

0 0

0 0 0

(a) Location of minterms (b) Looping terms

4

6

7

5 13

15

14 10

12

1

3

8

9

11

2

0100 11 10

01

00

11

10

AB
CD

0

The variable values along the edge of the map are ordered so that adjacent squares on
the map differ in only one variable. The �rst and last columns and the top and bottom rows
of the map are considered to be adjacent. Two 1’s in adjacent squares can be combined by
eliminating one variable using xy 1 xy r 5 x. Figure 1-3 shows a four-variable function with
nine minterms and two don’t cares. Minterms A rBC rD and A rBCD differ only in the vari-
able C, so they can be combined to form A rBD, as indicated by a loop on the map. Four 1’s in
a symmetrical pattern can be combined to eliminate two variables. The 1’s in the four corners
of the map can be combined as follows:

1A rB rC rD r 1 AB rC rD r 2 1 1A rB rCD r 1 AB rCD r 2 5 B rC rD r 1 B rCD r 5 B rD r

as indicated by the loop. Similarly, the six 1’s and two X’s in the bottom half of the map
combine to eliminate three variables and form the term C. The resulting simpli�ed function is

F 5 A rBD 1 B rD r 1 C

The minimum sum of products representation of a function consists of a sum of
prime implicants. A group of one, two, four, or eight adjacent 1’s on a map represents a prime

8 Chapter 1 Review of Logic Design Fundamentals

implicant if it cannot be combined with another group of 1’s to eliminate a variable. A prime
implicant is essential if it contains a 1 that is not contained in any other prime implicant.
When �nding a minimum sum of products from a map, essential prime implicants should
be looped �rst, and then a minimum number of prime implicants to cover the remaining
1’s should be looped. The Karnaugh map shown in Figure 1-4 has �ve prime implicants and
three essential prime implicants. A rC r is essential because minterm m1 is not covered by any
other prime implicant. Similarly, ACD is essential because of m11, and A rB rD r is essential
because of m2. After looping the essential prime implicants, all 1’s are covered except m7.
Since m7 can be covered by either prime implicant A rBD or BCD, F has two minimum forms:

F 5 A rC r 1 A rB rD r 1 ACD 1 A rBD

and

F 5 A rC r 1 A rB rD r 1 ACD 1 BCD

When don’t cares (X’s) are present on the map, the don’t cares are treated like 1’s when
forming prime implicants, but the X’s are ignored when �nding a minimum set of prime

FIGURE 1-4: Selection
of Prime Implicants

X

1

1

1

1

1

0100 11 10

01

00

11

10

AB
CD

1

1
A9C9

ACD

A9B9D 9

0

1

3

2 6 14 10

7 15 11

4 12 8

5 13 9

X

Prime implicants: A rC r, ACD, A rB rD r,
A rBD, BCD
Essential prime implicants: A rC r, ACD, A rB rD r

implicants to cover all the 1’s. The following procedure can be used to obtain a minimum sum
of products from a Karnaugh map:

1. Choose a minterm (a 1) that has not yet been covered.
2. Find all 1’s and X’s adjacent to that minterm. (Check the n adjacent squares on an

n-variable map.)
3. If a single term covers the minterm and all the adjacent 1’s and X’s, then that term is an

essential prime implicant, so select that term. (Note that don’t cares are treated like 1’s
in steps 2 and 3 but not in step 1.)

4. Repeat steps 1, 2, and 3 until all essential prime implicants have been chosen.
5. Find a minimum set of prime implicants that cover the remaining 1’s on the map. (If there

is more than one such set, choose a set with a minimum number of literals.)

To �nd a minimum product of sums from a Karnaugh map, loop the 0’s instead of the
1’s. Since the 0’s of F are the 1’s of F r, looping the 0’s in the proper way gives the mini-
mum sum of products for F r, and the complement is the minimum product of sums for F.

1.3 Karnaugh Maps 9

For Figure 1-3, �rst loop the essential prime implicants of F r (BC rD r and B rC rD, indicated
by dashed loops) and then cover the remaining 0 with AB. Thus the minimum sum for F r is

 F r 5 BC rD r 1 B rC rD 1 AB

from which the minimum product of sums for F is

 F 5 1B r 1 C 1 D 2 1B 1 C 1 D r 2 1A r 1 B r 2

1.3.1 Simplification Using Map-Entered Variables
Two four-variable Karnaugh maps can be used to simplify functions with �ve variables. If
functions have more than �ve variables, map-entered variables can be used. Consider a truth
table as in Table 1-2. There are six input variables (A, B, C, D, E, F) and one output vari-
able (G). Only certain rows of the truth table have been speci�ed. To completely specify the
truth table, 64 rows will be required. The input combinations not speci�ed in the truth table
result in an output of 0.

TABLE 1-2: Partial
Truth Table for a
Six-Variable Function

A B C D E F G

0 0 0 0 X X 1

0 0 0 1 X X X

0 0 1 0 X X 1

0 0 1 1 X X 1

0 1 0 1 1 X 1

0 1 1 1 1 X 1

1 0 0 1 X 1 1

1 0 1 0 X X X

1 0 1 1 X X 1

1 1 0 1 X X X

1 1 1 1 X X 1

Karnaugh map techniques can be extended to simplify functions such as this using map-
entered variables. Since E and F are the input variables with the most number of don’t cares
(X), a Karnaugh map can be formed with A, B, C, D and the remaining two variables can be
entered inside the map. Figure 1-5 shows a four-variable map with variables E and F entered
in the squares in the map. When E appears in a square, this means that if E 5 1, the corre-
sponding minterm is present in the function G, and if E 5 0, the minterm is absent. The �fth
and sixth rows in the truth table result in the E in the box corresponding to minterm 5 and
minterm 7. The seventh row results in the F in the box corresponding to minterm 9. Thus, the
map represents the six-variable function

G 1A, B, C, D, E, F 2 5 m0 1 m2 1 m3 1 Em5 1 Em7 1 Fm9 1 m11 1 m15

11 don rt care terms 2

where the minterms are minterms of the variables A, B, C, D. Note that m9 is present in G
only when F 5 1.

10 Chapter 1 Review of Logic Design Fundamentals

Next a general method of simplifying functions using map-entered variables is discussed.
In general, if a variable Pi is placed in square mj of a map of function F, this means that
F 5 1 when Pi 5 1, and the variables are chosen so that mj 5 1. Given a map with variables
P1, P2, c entered into some of the squares, the minimum sum of products form of F can be
found as follows: Find a sum of products expression for F of the form

 F 5 MS0 1 P1MS1 1 P2MS2 1 c (1-32)

where

 ● MS0 is the minimum sum obtained by setting P1 5 P2 5 c5 0.
 ● MS1 is the minimum sum obtained by setting P1 5 1, Pj 5 0 1 j 2 1 2 , and replacing all

1’s on the map with don’t cares.
 ● MS2 is the minimum sum obtained by setting P2 5 1, Pj 5 0 1 j 2 2 2 , and replacing all

1’s on the map with don’t cares.

Corresponding minimum sums can be found in a similar way for any remaining map-entered
variables.

The resulting expression for F will always be a correct representation of F. This expres-
sion will be a minimum sum provided that the values of the map-entered variables can be
assigned independently. On the other hand, the expression will not generally be a minimum
sum if the variables are not independent (for example, if P1 5 P2r).

For the example of Figure 1-5, maps for �nding MS0, MS1, and MS2 are shown, where
E corresponds to P1 and F corresponds to P2. Note that it is not required to draw a map for
E 5 1, F 5 1, because E 5 1 already covers cases with E 5 1, F 5 0 and E 5 1, F 5 1. The
resulting expression is a minimum sum of products for G:

 G 5 A rB r 1 ACD 1 EA rD 1 FAD

After some practice, it should be possible to write the minimum expression directly from
the original map without �rst plotting individual maps for each of the minimum sums.

 1.4 Designing With NA ND and NOR Gates
In many technologies, implementation of NAND gates or NOR gates is easier than that of
AND and OR gates. Figure 1-6 shows the symbols used for NAND and NOR gates. The
bubble at a gate input or output indicates a complement. Any logic function can be realized
using only NAND gates or only NOR gates.

FIGURE 1-5:
Simpli�cation Using
Map-Entered Variables 1

X

1

X

X

1 1

1

0100 11 10

01

00

11

10

AB
CDCD

X

X

X

X

X

X

1

X

X

0100

E = F = 0
MS0 = A9B9 + ACD

E = 1, F = 0
MS1 = A9D

E = 0, F = 1
MS2 = AD

11 10

01

00

11

10

AB
CD

X

1

1 X

X

X

X

X X

X

0100 11 10

01

00

11

10

AB
CD

1

E

E X

1

X

X

1

F

1

1

0100 11 10

01

00

11

10

AB

G

1.4 Designing With NA ND and NOR Gates 11

Conversion from circuits of OR and AND gates to circuits of all NOR gates or all NAND
gates is straightforward. To design a circuit of NOR gates, start with a product-of-sums rep-
resentation of the function (circle 0’s on the Karnaugh map). Then �nd a circuit of OR and
AND gates that has an AND gate at the output. If an AND gate output does not drive an
AND gate input and an OR gate output does not connect to an OR gate input, then con-
version is accomplished by replacing all gates with NOR gates and complementing inputs if
necessary. Figure 1-7 illustrates the conversion procedure for

 Z 5 G 1E 1 F 2 1A 1 B r 1 D 2 1C 1 D 2 5 G 1E 1 F 2 3 1A 1 B r 2C 1 D 4

Conversion to a circuit of NAND gates is similar, except the starting point should be
a sum of products form for the function (circle 1’s on the map), and the output gate of the
AND-OR circuit should be an OR gate.

FIGURE 1-6: NAND
and NOR Gates

NAND:

NOR:

C = (AB)9 = A9 + B9

C = (A + B)9 = A9B 9

C

C

C

C

A
B

A
B

A
B

A
B

;

;

FIGURE 1-7: Conversion to NOR Gates

(a) AND-OR circuit

D
C

A
B9 G

E
F

Z

(b) Equivalent NOR-gate circuit

A

G9D
C9

B9

E
F

Z

Double inversion cancels

Complemented input
cancels inversion

Even if AND and OR gates do not alternate, you can still convert a circuit of AND and
OR gates to a NAND or NOR circuit, but it may be necessary to add extra inverters so that
each added inversion is canceled by another inversion. The following procedure may be used
to convert to a NAND (or NOR) circuit:

1. Convert all AND gates to NAND gates by adding an inversion bubble at the output.
Convert OR gates to NAND gates by adding inversion bubbles at the inputs. (To convert
to NOR, add inversion bubbles at all OR gate outputs and all AND gate inputs.)

2. Whenever an inverted output drives an inverted input, no further action is needed, since
the two inversions cancel.

12 Chapter 1 Review of Logic Design Fundamentals

3. Whenever a noninverted gate output drives an inverted gate input or vice versa, insert an
inverter so that the bubbles will cancel. (Choose an inverter with the bubble at the input
or output, as required.)

4. Whenever a variable drives an inverted input, complement the variable (or add an
inverter) so the complementation cancels the inversion at the input.

In other words, if we always add bubbles (or inversions) in pairs, the function realized
by the circuit will be unchanged. To illustrate the procedure, you convert Figure 1-8(a) to
NANDs. First, add bubbles to change all gates to NAND gates (Figure 1-8(b)). The high-
lighted lines indicate four places where you have added only a single inversion. This is cor-
rected in Figure 1-8(c) by adding two inverters and complementing two variables.

 1.5 Hazards in Combinational Circuits
When the input to a combinational circuit changes, unwanted switching transients may
appear in the output. These transients occur when different paths from input to output have
different propagation delays. If, in response to an input change and for some combination
of propagation delays, a circuit output may momentarily go to 0 when it should remain a
constant 1, it is said that the circuit has a static 1-hazard. Similarly, if the output may momen-
tarily go to 1 when it should remain a 0, it is said that the circuit has a static 0-hazard. If, when
the output is supposed to change from 0 to 1 (or 1 to 0), the output may change three or more
times, the circuit has a dynamic hazard.

Consider the two simple circuits in Figure 1-9. Figure 1-9(a) shows an inverter and an
OR gate implementing the function A 1 A r. Logically, the output of this circuit is expected
to be a 1 always; however, a delay in the inverter gate can cause static hazards in this circuit.
Assume a nonzero delay for the inverter and that the value of A just changed from 1 to 0.
There is a short interval of time until the inverter delay has passed when both inputs of the
OR gate are 0 and hence the output of the circuit may momentarily go to 0. Similarly, in the

FIGURE 1-8: Conversion
of AND-OR Circuit to
NAND Gates

(a) AND-OR circuit

A
B

C
D

E
F

(c) Completed conversion

A
B

C
D9

E9
F

Added inverter
Added inverter

(b) First step in NAND conversion

A
B

C
D

E
F

Bubbles cancel

1.5 Hazards in Combinational Circuits 13

circuit in Figure 1-9(b), the expected output is always 0; however, when A changes from 1
to 0, a momentary 1 appears at the output of the inverter because of the delay. This circuit
hence has a static 0-hazard. The hazard occurs because both A and A r have the same value
for a short duration after A changes.

A static 1-hazard occurs in a sum of product implementation when two minterms dif-
fering by only one input variable are not covered by the same product term. Figure 1-10(a)
illustrates another circuit with a static 1-hazard. If A 5 C 5 1, the output should remain a
constant 1 when B changes from 1 to 0. However, as shown in Figure 1-10(b), if each gate
has a propagation delay of 10 ns, E will go to 0 before D goes to 1, resulting in a momentary
0 (a 1-hazard appearing in the output F). As seen on the Karnaugh map, there is no loop

FIGURE 1-9: Simple
Circuits Containing
Hazards

(a) Simple circuit with static
1-hazard

(b) Simple circuit with static
0-hazard

A A + A9 A (A + A9)9 = A A9

FIGURE 1-10:
Elimination of 1-Hazard

(a) Circuit with 1-hazard

0 1

0

1

10

1

0

10

01

00

11

10

A
BC

1-Hazard

C
E

B
A D

F

F = AB9 + BC

(c) Circuit with hazard removed

0 1

0

1

10

1

0

10

01

00

11

10

A
BCC

B
A

F

A F = AB9 + BC + AC

(b) Timing chart

B

D

E

F

0 ns 10 ns 20 ns 30 ns 40 ns 50 ns 60 ns

14 Chapter 1 Review of Logic Design Fundamentals

that covers both minterm ABC and AB rC. So if A 5 C 5 1 and B changes from 1 to 0, BC
immediately becomes 0, but until an inverter delay passes, AB r does not become a 1. Both
terms can momentarily go to 0, resulting in a glitch in F. If you add a loop corresponding to
the term AC to the map and add the corresponding gate to the circuit (Figure 1-10(c)), this
eliminates the hazard. The term AC remains 1 while B is changing, so no glitch can appear
in the output. In general, nonminimal expressions are required to eliminate static hazards.

To design a circuit that is free of static and dynamic hazards, the following procedure
may be used:

1. Find a sum of products expression 1Ft 2 for the output in which every pair of adjacent 1s is
covered by a 1-term. (The sum of all prime implicants will always satisfy this condition.)
A two-level AND-OR circuit based on this Ft will be free of dynamic, 1-, and 0-hazards.

2. If a different form of circuit is desired, manipulate Ft to the desired form by simple factor-
ing, DeMorgan’s laws, and so on. Treat each xi and xir as independent variables to prevent
introduction of hazards.

Alternatively, you can start with a product-of-sums expression in which every pair of
adjacent 0s is covered by a 0-term.

Given a circuit, one can identify the static hazards in it by writing an expression for the
output in terms of the inputs exactly as it is implemented in the circuit and manipulating it to
a sum of products form, treating xi and xir as independent variables. A Karnaugh map can be
constructed and all implicants corresponding to each term circled. If any pair of adjacent 1’s
is not covered by a single term, a static 1-hazard can occur. Similarly, a static 0-hazard can be
identi�ed by writing a product-of-sums expression for the circuit.

(a) Find all the static hazards in the following circuit. For each hazard, specify the values of the input variables and which
variable is changing when the hazard occurs.

E X A M PLE

a

a
b

d

1

2

3

4
5 F

c

a9

(b) Design a NAND-gate circuit that is free of static hazards to realize the same function.

Answer:

(a) Static-1 hazard: Write an expression for the output as it is implemented

 F 5 1 1ab 2 r # 1a 1 c 2 r 1 1a r 1 d 2 r 2 r
 5 ab 1 1 1a 1 c 2 r 1 1a r 1 d 2 r 2 r Simplify treating a and ar as independent variables

 5 ab 1 1a 1 c 2 1a r 1 d 2
 5 ab 1 aa r 1 ad 1 a rc 1 cd;

1.5 Hazards in Combinational Circuits 15

1-hazard occurs when bcd 5 110, and a changes

ab
cd 00

0 0 1 0

1 0

1 1

1 1

0 0

1 1

1 1

01

01

11

11

10

10

00

When bcd 5 110 and a changes from 1 to 0, then the output of gate 1 changes from 0 to 1 while the output of gate 4
changes from 1 to 0. If the output of gate 1 changes before the output of gate 4 changes, then there is a short period of
time where both inputs to gate 5 are 1, causing the output of gate 1 to go to 0 temporarily, thereby creating a glitch before
the output of gate 4 changes to 0 and restoring the output of gate 5 back to 1. A glitch could also happen when bcd 5 110
and a changes from 0 to 1, but gate 4 changes before gate 1.

Static-0 hazard:

 F 5 ab 1 aa r 1 ad 1 a rc 1 cd Equation derived above

 5 ab 1 a 1a r 1 d 2 1 c 1a r 1 d 2
 5 ab 1 1a 1 c 2 1a r 1 d 2
 5 1ab 1 a 1 c 2 1ab 1 a r 1 d 2 see Table 1-1 for Boolean laws

 5 1a 1 c 2 1a 1 a r 1 d 2 1a r 1 b 1 d 2 a 1 ab 5 a; a r 1 d 1 ab 5 1a r 1 d 1 a 2 1a r 1 d 1 b 2

Circle all these terms of 0’s in the K-map; the arc shows 0’s not in same term.
0-hazard occurs when bcd 5 000, and a changes

(b) We will design a 2-level sum of products circuit because a 2-level sum of products circuit has no 0-hazard as long as an
input and its complement are not connected to the same AND gate. Avoid the 1-hazard by adding product term bc.

Circle all these terms on the K-map; the arc shows nearby 1’s that are not in the same product term, indicating a 1-hazard.

b
c

a
b

a
d

a9
c

c
d

A logic hazard is said to exist in a logic network if some set of delays in the network could
lead to a glitch. It does not mean that the network will necessarily have a glitch. A logic network
can have a logic hazard, but an actual hardware implementation of the logic network may not
show any glitches for its particular set of delay values. If there are two unlinked adjacent boxes
in the K-map, the logic network has a static hazard that may result in a glitch for a transition in

16 Chapter 1 Review of Logic Design Fundamentals

either direction (irrespective of which box is the starting input vector and which box is the end-
ing input vector). The presence or absence of a logic hazard depends only on the K-map and
not on the actual delays in the �nal implementation. The idea is that you cannot easily predict
delays in the �nal layout since it depends on how transistors in the gates are sized, how many
vias a wire goes through, and so on. But if you design the logic network so that it is hazard-
free, then it is guaranteed not to have glitches no matter what the �nal delays in the layout are.

 1.6 Flip-Flops and Latches
Sequential circuits commonly use �ip-�ops as storage devices. There are several types of �ip-
�ops, such as Delay (D) �ip-�ops, J-K �ip-�ops, Toggle (T) �ip-�ops, and so on. Figure 1-11
shows a clocked D �ip-�op. This �ip-�op can change state in response to the rising edge of
the clock input. The next state of the �ip-�op after the rising edge of the clock is equal to
the D input before the rising edge. The characteristic equation of the �ip-�op is therefore
Q1 5 D, where Q1 represents the next state of the Q output after the active edge of the
clock and D is the input before the active edge.

FIGURE 1-11: Clocked
D Flip-Flop with
Rising-Edge Trigger

DFF

CLK D

QQ9

D Q Q+

0 0 0
0 1 0
1 0 1
1 1 1

Figure 1-12 shows a clocked J-K �ip-�op and its truth table. Since there is a bubble at the
clock input, all state changes occur following the falling edge of the clock input. If J 5 K 5 0,
no state change occurs. If J 5 1 and K 5 0, the �ip-�op is set to 1, independent of the pres-
ent state. If J 5 0 and K 5 1, the �ip-�op is always reset to 0. If J 5 K 5 1, the �ip-�op
changes state. The characteristic equation, derived from the truth table in Figure 1-12, using
a Karnaugh map, is

 Q1 5 JQ r 1 K rQ (1-33)

FIGURE 1-12: Clocked
J-K Flip-Flop

CK
FF

Q9 Q

JK

J K Q Q+

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

A clocked T �ip-�op (Figure 1-13) changes state following the active edge of the clock if
T 5 1, and no state change occurs if T 5 0. T �ip-�ops are particularly useful for designing
counters. The characteristic equation for the T �ip-�op is

 Q1 5 QT r 1 Q rT 5 Q ! T (1-34)

vias A via is an
electrical connec-
tion between lay-
ers in an integrated
circuit (IC).

1.6 Flip-Flops and Latches 17

FIGURE 1-13: Clocked T
Flip-Flop

FF

CLK T

QQ 9

T Q Q+

0 0 0
0 1 1
1 0 1
1 1 0

A J-K �ip-�op is easily converted to a T �ip-�op by connecting T to both J and K. Sub-
stituting T for J and K in Equation (1-33) yields Equation (1-34).

Two NOR gates can be connected to form an unclocked S-R (set-reset) �ip-�op, as
shown in Figure 1-14. An unclocked �ip-�op of this type is often referred to as an S-R latch.
If S 5 1 and R 5 0, the Q output becomes 1 and P 5 Q r. If S 5 0 and R 5 1, Q becomes 0
and P 5 Q r. If S 5 R 5 0, no change of state occurs. If R 5 S 5 1, P 5 Q 5 0, which is not
a proper �ip-�op state, since the two outputs should always be complements. If R 5 S 5 1
and these inputs are simultaneously changed to 0, oscillation may occur. For this reason, S
and R are not allowed to be 1 at the same time. For purposes of deriving the characteristic
equation, assume that S 5 R 5 1 never occurs, in which case Q1 5 S 1 R rQ. In this case,
Q1 represents the state after any input changes have propagated to the Q output.

FIGURE 1-14: S-R Latch
S

R

P

Q

S R Q Q+

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 –
1 1 1 –

A gated D latch (Figure 1-15), also called a transparent D latch, behaves as follows: If
the gate signal G 5 1, then the Q output follows the D input 1Q1 5 D 2 . If G 5 0, then the
latch holds the previous value of Q 1Q1 5 Q 2 . Essentially, the device will not respond to
input changes unless G 5 1; it simples “latches” the previous input right before G became
0. Some refer to the D latch as a level-sensitive D �ip-�op. Essentially, if the gate input G is
viewed as a clock, the latch can be considered as a device that operates when the clock level
is high and does not respond to the inputs when the clock level is low. The characteristic
equation for the D latch is Q1 5 GD 1 G rQ. Figure 1-16 shows an implementation of the
D latch using gates. Since the Q1 equation has a 1-hazard, an extra AND gate has been
added to eliminate the hazard.

FIGURE 1-15:
Transparent D Latch

Latch

Q

DG

G D Q Q+

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

